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1 Introduction

Year after year, around a thousand children in
Germany alone incur brain damage as a result of
a perinatal hypoxic-ischemic insult [152, Perina-
tal statistics for the Federal Republic of Ger-
many]. Depending on the extent and location of
the insult these children can develop spastic pare-
sis, choreo-athetosis, ataxia and disorders of sen-
somotor coordination (figure 1). Nor is it uncom-
mon for damage to the auditory and visual sys-
tems and impairment of intellectual ability to de-
velop later [197]. The resulting impact on the
children affected and their families is consider-
able and their subsequent care demands a high
level of commitment and co-operation between
pediatricians, child neurologists, physio-, speech-
and psychotherapists and other specialists. Con-
servative estimates of the costs to society for

Figure 1. Spastic diplegia
in a child with cerebral
palsy [117 a].
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treatment and care of such cases per birth year lie
around 1 billion German marks. However, despite
the severe clinical and socio-economic signifi-
cance, no effective therapeutic strategies have yet
been developed to counteract this condition; one
possible explanation being that perinatal manage-
ment up to now has focused on preventing hyp-
oxic-ischemic brain damage altogether [197]. The
pathophysiology of ischemic brain lesions has not
been investigated in depth until recently. One of
the most urgent tasks for obstetricians and neona-
tologists will now be to develop therapeutic stra-
tegies from these pathophysiological models and
to test them in prospective clinical studies.

This review article presents our current under-
standing of the pathophysiology of hypoxic-isch-
emic brain damage in mature neonates. The situa-
tion in premature neonates is discussed separately
wherever necessary. We first deal with the causes
of ischemic brain lesion, especially intrauterine
asphyxia of the fetus, and their effects on the car-
diovascular system and cerebral perfusion. Next
the typical neuropathological findings arising
from reduced perfusion of the fetal brain are de-
scribed. Also of key importance are the cellular
mechanisms that are triggered by an ischemic in-
sult. These will be discussed in detail, with partic-
ular emphasis on alterations of energy metabo-
lism, intracellular calcium accumulation, the re-
lease of excitatory amino acids and protein bio-
synthesis. A considerable portion of neuronal cell
damage first occurs during the reperfusion phase
following an ischemic insult. The formation of
oxygen radicals, induction of the nitric oxide sys-
tem, inflammatory reactions and apoptosis will
therefore be discussed in depth in this context.



262 Berger & Garnier, Perinatal brain injury

Finally, therapeutic concepts will be presented that
have been developed out of our understanding of
these pathophysiological processes and have been
tested in animal experiments. Of these, intravenous
administration of magnesium and induction of
cerebral hypothermia appear to be of the greatest
clinical relevance. This article is a short summary
of a previously published paper [18].

2 Causes of hypoxic-ischemic brain lesions
in neonates

With a few exceptions, acute hypoxic-ischemic
brain lesions in neonates are caused by severe in-
trauterine asphyxia [197]. This is usually brought
about by an acute reduction in the uterine or um-
bilical circulation [103], which in turn can be
caused by abruptio placentae, contracture of the
uterus, vena cava occlusion syndrome, compres-
sion of the umbilical cord etc.

3 Circulatory centralization and cerebral
perfusion

The fetus reacts to an oxygen deficit of this sever-
ity by activating the sympathetic-adrenergic sys-
tem and redistributing the cardiac output in favor
of the central organs (brain, heart and adrenals)
[103]. The lowered oxygen and raised carbon di-
oxide partial pressures lead to vasodilatation of
the cerebral vascular bed causing cerebral hyper-
perfusion. This affects the brainstem in particular,
while the bood flow to the white matter of the
brain is hardly increased at all [7, 120, 104]. De-
pending on the extent of the oxygen deficit and
the maturity of the fetus, this cerebral hyperperfu-
sion can reach 223 times the original rate of
blood flow. If the oxygen deficit persists the an-
aerobic energy reserves of the heart become ex-
hausted. The cardiac output and the mean arterial
blood pressure fall. At mean arterial blood pres-
sures of below 25230 mmHg there is an increas-
ing loss of cerebral autoregulation, and a conse-
quent reduction of the cerebral blood flow [119].
This affects the parasagittal region of the cere-
brum and the white matter most of all. Immature
fetuses seem to be particularly endangered by
their limited ability to increase the cerebral circu-
lation through vasodilatation.
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If the supply of oxygen to the fetus can be im-
proved, cerebral hyperperfusion is brought about
by the progressive postasphyxial increase in
cardiac output [103]. This hyperperfusion can be
demonstrated in experiments using animal mod-
els of isolated cerebral ischemia (figure 2) [26].
Vasodilatation induced by acidosis in cerebral tis-
sues and a reduction of blood viscosity at higher
rates of blood flow have been put forward as pos-
sible causes of such hyperperfusion. The initial
hyperperfusion of the brain is followed directly
by a phase of hypoperfusion (figure 2) [26, 175].
Postischemic hypoperfusion may be caused by
oxygen radicals formed during the reperfusion
phase after ischemia. Rosenberg and co-workers
demonstrated that this phenomenon can be pre-
vented by inhibiting the synthesis of oxygen radi-
cals after ischemia [175]. In addition, a so-called
no-reflow phenomenon can be observed after se-
vere cerebral ischemia. This failure of reperfusion
in various brain areas is a consequence of the
greater viscosity of stagnant blood, compression
of the smallest blood vessels through swelling of
the perivascular glial cells, formation of endothe-
lial microvilli, increased intracerebral pressure,
postischemic arterial hypotension and increased

Figure 2. Blood flow to the cerebrum (ml/min 3 100 g)
in fetal sheep near term before, during and after global
cerebral ischemia of 30 min duration. Cerebral ischemia
was inducted by occluding both carotid arteries. Results
are given as mean 6 SD. The data were analyzed for
intragroup differences by multivariate analysis of
variance for repeated measures. Games-Howell-test was
used as post-hoc testing procedure (** P < 0.01,
*** P < 0.001 (ischemia/recovery vs. control)) [26, 32].
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intravascular coagulation. The extent of the no-
reflow phenomenon depends on the duration and
type of cerebral ischemia. It is most pronounced
when the vessels are engorged with blood after
venous congestion [99]. Directly after postisch-
emic hypoperfusion the cerebral blood flow re-
covers or overshoots into a second phase of hyp-
erperfusion (figure 2) [26, 169]. Since this hyper-
perfusion is often accompanied by an isoelectric
encephalogram, it is regarded as an extremely un-
favourable prognostic factor [169].

4 Neuropathology of hypoxic-ischemic
brain lesions

There are essentially six forms of hypoxic-
ischemic brain lesion: selective neuronal cell
damage, status marmoratus, parasagittal brain
damage, periventricular leucomalacia, intra-
ventricular or periventricular hemorrhage and
focal or multifocal ischemic brain lesions (ta-
ble I) [197].

In mature fetuses, selective neuronal cell damage
is found most frequently in the cerebral cortex,
hippocampus, cerebellum and the anterior horn
cells of the spinal cord [66, 111, 148, 197]. As
shown in animal experiments, the damage occurs

Table I. Hypoxic-ischemic brain damage in the fetus
and neonate

Neurologic lesion Topographic localization

Selective neuronal cortex cerebri
necrosis cerebellum

hippocampus
anterior horn cells of the

spinal cord

Status marmoratus basal ganglia thalamus

Parasagittal cerebral cortex cerebri and subcortical
injury substantia alba

Periventricular substantia alba
leucomalacia

Intra-, periventricular germinal matrix
hemorrhage substantia alba

ventricles

Focal/multifocal cortex cerebri and subcortical
ischemic brain damage substantia alba
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after ischemia of only 10 min. [204]. Within the
cortex, the border zones between the major cere-
bral arteries are the worst affected. The cell dam-
age is mostly parasagittal and more marked in the
sulci than in the gyri, i. e. the pattern of distribu-
tion is strongly dependent on perfusion. The
neurones show the most damage while the oligo-
dendrocytes, astroglia and microglia remain
largely unscathed [197].

Status marmoratus, which is observed in only 5 %
of children with hypoxic-ischemic brain lesions,
chiefly affects the basal ganglia and the thalamus.
The complete picture of the disease does not
emerge until 8 months after birth although the in-
sult begins to take effect during the perinatal
period. Status marmoratus is characterized by
loss of neurones, gliosis and hypermyelination.
The increased number of myelinated astrocytic
cell processes and their abnormal distribution
give the structures affected, especially the puta-
men, a marbled appearance [66, 173].

Parasagittal brain damage caused by cerebral
ischemia is mostly reported in mature neonates
[66, 111, 148, 197] and affects the parietal and
occipital regions in particular. The damage usu-
ally arises through insufficient perfusion of the
border zones between the main cerebral arteries
during cerebral ischemia. This form of damage
has been reproduced in animal models (figure 3).
The extent of the brain lesions was found to be
closely dependent on the duration and severity of
the cerebral ischemia [26, 204].

Periventricular leucomalacia is characterized by
damage to the white matter dorsal and lateral to
the lateral ventricle [111, 148]. It occurs most fre-
quently in immature fetuses and chiefly affects
the radiatio occipitalis at the trigonum of the lat-
eral ventricle and the white matter around the fo-
ramen of Monroe. Six to twelve hours after an
ischemic insult necrotic foci can be observed in
these areas [10]. As the disease progresses small
cysts develop out of the necrotic foci that can be
identified by ultrasonography [56, 162]. As glio-
sis progresses the cysts begin to constrict. The
lack of myelinization owing to the destruction of
the oligodendrocytes and an enlargement of the
lateral ventricle then become the most prominent
features of the disease [53, 173, 186]. Periventri-
cular leucomalacia around the Radiatio occipitalis
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Figure 3. Neuronal cell damage in the cerebrum in fe-
tal sheep near term 72 h after induction of global cere-
bral ischemia of 30 min duration. Cerebral ischemia was
induced by occluding both carotid arteries. Neuronal
cell damage was quantified as follows: 025 % damage
(score 1), 5250 % damage (score 2), 50295 % damage
(score 3), 95299 % damage (score 4), and 100 % dam-
age (score 5). Neuronal cell damage was most pro-
nounced in the parasigittal regions, whereas in the more
lateral part of the cortex only minor neuronal damage
occurred. There was a tremendous reduction in neuronal
cell damage after pretreatment with the calcium antago-
nist flunarizine (1 mg/kg estimated fetal body weight),
whereas glutamate antagonist lubeluzole failed to pro-
tect the fetal brain. Values are given as mean 6 SD. The
data were analyzed within and between groups using a
two-way ANOVA followed by Games-Howell post test
(* P < 0.05, ** P < 0.01 (treated vs. untreated)) [32,
70].

at the trigonum of the lateral ventricle and in the
white matter around the foramen of Monroe
arises through vascular problems. The ability to
increase blood flow by vasodilatation during and
after a period of arterial hypotension appears to
be extremely limited in these brain areas. After
the 32 nd week of pregnancy the vascularization
of these vulnerable areas is considerably
increased and the incidence of periventricular
leucomalacia thereby reduced.

Intra- or periventricular hemorrhage is another
typical lesion of the immature neonate brain
[197]. It originates in the vascular bed of the ger-
minal matrix, a brain region that gradually
shrinks until it has almost completely disappeared
in the mature fetus [92, 140, 144]. Blood vessels
in this brain region burst very easily. Sub- and
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post-partum fluctuations in cerebral blood flow
can therefore lead to rupture of these vessels
causing intra- or periventricular hemorrhage [27,
67, 74, 104, 134]. Possible consequences of a
brain hemorrhage are destruction of the germinal
matrix, a periventricular hemorrhagic infarction
in the cerebral white matter or hydrocephalus
[197].

Focal or multifocal brain damage usually occurs
within areas supplied by one or more of the main
cerebral arteries. This form of insult is not nor-
mally observed before the 28th week of preg-
nancy. The incidence then rises with increasing
maturity of the fetus [12]. Focal or multifocal
brain lesions are often the result of infections,
trauma or twin births, especially monochoriotic
ones [15, 166, 178]. It is thought that thrombo-
plastic material or emboli from a miscarried co-
twin sometimes occludes the cerebrovascular cir-
culation of the living twin. Brain damage may
also be caused by anemia or polycythemia and
subsequent cardiac insufficiency and cerebral hy-
poperfusion arising from a feto-fetal transfusion.
Alternatively, focal or multifocal brain damage
can arise from systemic arterial hypotension, so
that there is little distinction between this and
other forms of brain damage such as selective
neuronal cell damage, status marmoratus, para-
sagittal brain damage or periventricular leucoma-
lacia [197].

5 Energy metabolism and calcium
homeostasis

The normal function of the brain is essentially
dependent on an adequate oxygen supply to
maintain energy metabolism. Whereas, during
moderate hypoxemia, the fetus is able to maintain
adequate levels of ATP by speeding up the rate
of anaerobic glycolysis [22, 23, 28], an acute re-
duction of the fetal oxygen supply will lead to a
breakdown of energy metabolism in the cerebral
cortex within a few minutes (table II) [20, 21].
The ionic gradients for Na1, K1 and Ca21 across
the cell membranes can no longer be regulated
since the Na1/K1-pump stops working through
lack of energy. The membrane potential ap-
proaches 0 mV [93]. The energy depleted cell
takes up Na1, and the subsequent fall in mem-
brane potential induces an influx of Cl2 ions.
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Table II. Concentrations of high-energy phosphates in the cerebral cortex of fetal guinea pigs near term during
acute asphyxia caused by arrest of uterine blood flow [27, 28]

Brain metabolite [mmol/g]

Control Asphyxia 2 min Asphyxia 4 min

Adenosine triphosphate 2.59 6 0.15 2.03 6 0.21** 1.35 6 0.32**
Adenosine diphosphate 0.37 6 0.07 0.76 6 0.13** 1.05 6 0.15**
Adenosine monophosphate 0.04 6 0.02 0.17 6 0.09** 0.52 6 0.21**

Values are given as mean 6 SD. ** P < 0.01 (asphyxia vs. control)

This intracellular accumulation of Na1 and Cl2

ions leads to swelling of the cells as water flows
in through osmosis. Cell edema is therefore an
inevitable consequence of cellular energy defi-
ciency [183].

In addition, loss of membrane potential leads to
a massive influx of calcium down the extreme
extra-/intracellular concentration gradient. It is
currently thought that the excessive increase in
intracellular calcium levels, the so-called cal-

Figure 4. Primary secondary effects of the increased intracellular calcium concentration during and after cerebral
ischemia [183]. XDH, xanthine dehydrogenase; XO, xanthone oxidase; PAF, platelet aggregating factor; FFAs, free
fatty acids; DAG, diacylglyceride; LPL, lysophospholipids.
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cium-overload, leads to cell damage by activa-
ting proteases, lipases and endonucleases [183].
Some of the cellular mechanisms that are acti-
vated by the calcium influx occurring during
ischemia are shown in figure 4: alteration of the
arachidonic acid cycle affecting prostaglandin
synthesis, disturbances of gene expression and
protein synthesis and increased production of
free radicals and obstruction of the axonal trans-
port system through disaggregation of microtu-
buli.
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6 Excitatory neurotransmitters

As early as 1969 Olney succeeded in demonstrat-
ing that neuronal cell death could be induced by
the exogenous application of glutamate, an excit-
atory neurotransmitter [155]. In subsequent years,
this observation was confirmed in both immature
and adult animals of various species including
primates [156]. In 1984, Rothman showed that
glutamate antagonists could prevent anoxic cell
death in hippocampal tissue cultures [176]. That
same year, Benveniste and co-workers reported
an excessive release of glutamate into the extra-
cellular space during cerebral ischemia in vivo
[16], from which they concluded that glutamate
might play an important role in neuronal cell
death following ischemia [157, 176].

Glutamate activates postsynaptic receptors that
form ionic channels permeable to cations (fig-
ure 5) [180]. The NMDA-receptor regulates a
calcium channel, the metabotropic receptors in-
duce an emptying of intracellular calcium stores
while the AMPA/KA receptors open a voltage-
dependent calcium channel by membrane depo-
larization. The increase in free calcium within the

Figure 5. Regulation of glutamate-mediated synaptic transmission. After depolarization of the presynaptic neuron
vesicular glutamate is released by exocytosis into into the synaptic cleft. Released glutamate activates postsynaptic
ionotropic (NMDA, AMPA, Kainate) receptors and pre- or postsynaptic metabotropic (G-protein coupled) receptors.
Glutamate action is terminated by Na1 dependent uptake in the presynaptic neuron as well as glial cells [151].
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cell activates proteases, lipases and endonucle-
ases that then initiate processes leading to cell
death [46, 182].

There is no longer any doubt that glutamate
release plays a critical role in neuronal cell
death after focal cerebral ischemia such as that
caused by an arterial embolus. Glutamate antag-
onists have been shown to exert a strong neuro-
protective effect against hypoxic-ischemic brain
damage in adult [109, 163, 195] and even in
neonatal animals [6, 63, 73, 95, 130, 149]. In
neonatal rats it was shown that glutamate re-
lease during and after an hypoxic-ischemic in-
sult could evoke epileptogenic activity and that
this effect was dependent on the maturity of the
brain. In rats, the most marked effect was ob-
served 10 to 12 days after birth [105]. The
reason for this seems to be a developmental
change in the composition of the glutamate re-
ceptor, which increases the neurone’s permeabil-
ity to calcium [106, 107]. Furthermore, the
levels of GABA, one of the most important
inhibitory neurotransmitters, in neuronal tissue
are very low at this stage of development [50].
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As shown in adult animals epileptogenic im-
pulses in the vicinity of a brain infarct cause a
considerable rise in metabolic activity. In an
inadequately perfused section of brain tissue
such as the penumbra surrounding an infarct,
this can rapidly lead to an imbalance between
cell metabolism and blood circulation, resulting
in brain damage. In addition, the formation of
LTP’s (long term potentials), that play an impor-
tant role in synaptic plasticity and hence in
learning processes, may be disturbed by the in-
duced epileptogenic activity [34]. Long-term
neurological damage is the inevitable conse-
quence in the children affected.

In global ischemia, such as that caused by
cardiac insufficiency, the situation is quite dif-
ferent to that in focal ischemia. As shown in
adult animals it is far less clear whether glut-
amate is directly involved in neuronal cell death
[2, 3]. As Hossmannn points out in his 1994
review article, a number of observations argue
against any major involvement of glutamate in
processes leading to neuronal cell death after
global ischemia [100]:

(1) Neither the pattern of glutamate release dur-
ing ischemia nor the cerebral distribution of
glutamate receptors matches the regional
manifestation of brain damage after global
ischemia.

(2) Glutamate toxicity in cell cultures from vul-
nerable brain areas was found to be no higher
than in cultures from non-vulnerable regions.

(3) In contrast to the effects of in-vitro ischemia,
application of glutamate to cell cultures or
hippocampal tissue slices caused no pro-
longed inhibition of protein synthesis.

Since then, the possibility of glutamate’s playing
a key role in the induction of brain damage either
during or directly after global ischemia, even in
the immature brain, has been effectively excluded
by the following observations: Application of
glutamate or glutamate antagonists to hippocam-
pal slices from guinea pig fetuses did not affect
postischemic protein biosynthesis, a parameter
used as an early marker of neuronal cell death
(figure 6) [29]. Furthermore, the glutamate antag-
onist lubeluzole was found to have no neuropro-
tective effect on a model of cerebral ischemia in
mature sheep fetuses (figure 3 [70]). However, it
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is possible that later, during the reperfusion phase
after cerebral ischemia, glutamate-induced epi-
leptogenic activity does cause brain damage. This
possibility will be discussed further on.

Figure 6. Protein synthesis rate in hippocampal slices
from mature fetal guinea pigs 12 h after in vitro isch-
emia. The ischemic period lasted between 20 and
40 min (I20, I30, I40). Protein synthesis rate was not
affected neither by application of glutamate nor by glu-
tamate antagonists (MK-801, Kynurenic acid). Values
are given as mean 6 SD. Statistical analysis was per-
formed by ANOVA followed by Scheffé’s F-test
(* P < 0.05, ** P < 0.01, *** P < 0.001 (ischemia vs.
control)) [29].
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7 Protein biosynthesis

As animal experiments show, inhibition of protein
synthesis plays a key role in the postischemic
processes leading to neuronal cell damage [98].
Protein synthesis is reduced both during ischemia
and in the early postischemic phase in vulnerable
and non-vulnerable brain areas [108]. At the end
of the ischemic period, protein synthesis in non-
vulnerable regions recovers to pre-ischemic
levels, while in vulnerable regions it remains in-
hibited [37, 98]. Thus the inhibition of protein
synthesis appears to be an early indicator of sub-
sequent neuronal cell death [98]. This observation
ties in with the results of experiments demonstrat-
ing the neuroprotective effect of hypothermia or
barbiturates after cerebral ischemia [201, 205]:
Shortly after cerebral ischemia, the usual inhibi-
tion of protein synthesis set in, however, the re-
covery phase in the normally vulnerable areas
was now much shorter (figure 7), and was accom-
panied by far less pronounced neuronal cell dam-

Figure 7. Autoradiographic evaluation of protein synthesis before (control) and at two recirculation times (2 hours
and 2 days) after 5 min bilateral carotid artery occlusion in gerbil. Left: untreated animals. Right: treated animals
(50 mg/kg pentobarbital intraperitoneal, shortly after ischemia). Note similar reduction of protein synthesis after
2 h of recirculation but recovery in all regions including CA1 sector in the barbiturate-treated animals after 2 days
recovery (arrows) [98].

J. Perinat. Med. 28 (2000)

age. Similar findings were reported in connection
with developmental variations in the response of
the brain to ischemic insults: Protein synthesis in
the fetal brain was found to recover much faster
from ischemic insults than that in adult brains
[24]. The prolonged inhibition of protein synthe-
sis is therefore an early indicator and possibly
also one of the causes of neuronal cell damage
arising after ischemia [98].

8 Secondary cell damage during
reperfusion

In cerebral tissue capable of regeneration after an
ischemic insult, energy metabolism can be seen
to recover rapidly [24, 98]. A few hours later,
however, the energy status is diminished once
again in the affected tissue [35, 167]. Simulta-
neously, a secondary cell edema develops, fol-
lowed a little later by epileptogenic activity that
can be monitored on EEG. These events are quite
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probably brought about or modulated by oxygen
radicals, nitric oxide, inflammatory reactions and
excitatory amino acids, particularly glutamate.

8.1 Oxygen radicals

During cerebral ischemia, the cut back in oxida-
tive phosphorylation rapidly diminishes reserves
of high-energy phosphates. Within a few minutes
considerable amounts of adenosine and hypoxan-
thine accumulate. During reperfusion these meta-
bolic products are metabolised further by xan-
thine oxidase to produce xanthine and uric acid
[129]. Especially, the breakdown of hypoxanthine
by xanthine oxidase in the presence of oxygen,
produces a flood of superoxide radicals. These
are then converted by superoxide dismutase to
hydrogen peroxide [64, 65]. By the Haber-Weiss
reaction shown below, hydrogen peroxide and tis-
sue iron can then combine to form hydroxyl radi-
cals.

Numerous studies have shown that oxygen radi-
cals play an important role in processes leading
to neuronal cell damage [190, review 89]. In adult
animals various degrees of neuroprotection
against ischemic insults can be achieved through
the inhibition of xanthine oxidase or by applica-
tion of oxygen radical scavengers and iron chela-
tors [13, 33, 44, 88, 117, 127, 136, 165]. Oxygen
radicals also appear to be involved in mecha-
nisms underlying neuronal cell death in immature
animals. The rate of lipid peroxidation was found
to be considerably increased after hypoxia in fetal
guinea pigs and newborn lambs [1, 75, 137]. The
longer the gestational age, the greater this
increase was [137]. Furthermore, marked pro-
duction of oxygen radicals was observed after
hypoxia both in vitro, in cultures of fetal neuro-
nes, and in vivo, in neonatal mice [94, 153].
There is also evidence that the infarct volume can
be reduced in a model of focal ischemia in neona-
tal rats by application of allopurinol, an inhibitor
of xanthine oxidase and oxygen radical scaven-
gers [157].

8.2 Nitric oxide

During cerebral ischemia, a massive influx of in-
tracellular calcium takes place through various
channels, regulated, among other things, by the
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neurotransmitter glutamate [47, 182]. The rise in
intracellular calcium activates NO-synthase [59,
71], which produces NO, citrulline and water
from arginine, NADPH and oxygen.

Arginine NO
1 NADPH 1 CitrullineNO-Synthase¿¿¿¿¡1 H1 1 NADP1

1 O2 1 H2O

There is also an accumulation of cGMP [14].
Since there is no oxygen available during isch-
emia, NO cannot be synthesized until the reperfu-
sion phase [14]. Likewise, large numbers of su-
peroxide radicals are produced by xanthine oxi-
dase and via other pathways in the mitochondria
during and, to an even greater extent, after isch-
emia [122]. During reperfusion, NO and superox-
ide radicals combine to produce peroxynitrite,
leading to the formation of more potent radicals.
Destruction of the tissue is the inevitable result
[14].

Investigations of the action of inhibitors of NO-
synthase in models of cerebral ischemia in adult
animals have yielded highly variable results [43,
52, 55, 91, 110, 143, 147, 207]. This can be ex-
plained by the fact that the neuroprotective effect
of NO-synthase blockers after ischemia, that is
brought about by a lowering of NO production
and consequent reduction of the build-up of po-
tent radicals, is counteracted by a marked vaso-
constriction induced by the fall in NO concentra-
tion in endothelial cells [53]. Thus Moskowitz
and co-workers found markedly smaller infarct
loci after occlusion of the A. cerebri media in
mice whose expression of the neuronal form of
NO-synthase had been blocked than in the wild
type of the animal [102]. The same group was
also able to protect the brain from ischemic in-
sults by application of selective blockers of
neuronal NO-synthase [53].

To date hardly any studies have investigated the
importance of nitric oxide in neuronal cell death
in neonates or fetuses. After a hypoxic-ischemic
insult in neonatal rats, a greater number of neuro-
nes was found to contain NO-synthase [96]. The
activity of this NO-synthase, however, appeared
to be diminished [107]. Furthermore, two peaks
of NO production were detected in this animal
model: one during hypoxia and the other one dur-
ing the reoxygenation period. The neuronal and
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the inducible form of NO-synthase seems to be
differently involved in this process [97]. Some
authors succeeded in preventing ischemic lesions
in the brains of immature animals through appli-
cation of NO-blockers [8, 90, 191], while other
research teams were unable to achieve this effect
or observed, instead, a worsening of the damage
[125, 185]. As already mentioned, this discrep-
ancy may have arisen from the different effects
of NO-blockers on vascular endothelia and
neurones. In our investigations of the effect of
blocking NO-synthase we therefore by-passed the
cardiovascular system, by carrying out experi-
ments on hippocampal slices [31]. Although post-
ischemic NO-production could be completely
blocked with NO-inhibitors, this intervention had
no influence on the postischemic inhibition of
protein biosynthesis, a parameter used as an early
indicator of neuronal cell death (figure 8).
Whether or not NO is directly involved in the
pathogenesis of neuronal cell death following
ischemia in fetuses therefore remains an open
question.

8.3 Inflammatory reactions

As various studies have shown, ischemia and
subsequent reperfusion can set off an inflamma-
tory reaction in the brain (figure 9) [61, 177].
Expression of a wide variety of cytokines, e. g.
IL-1, IL-6, transforming growth factor-b, and
fibroblast growth factor, was observed. In rats,
mRNA of IL-1 was expressed within 15 min of
global cerebral ischemia [135]. Cytokines ap-
pear to be formed in activated microglia [72,
132, 141]. They are thought to mediate the mi-
gration of inflammatory cells within the reper-
fused tissue.

Through increased expression of the adhesion
molecules P- and E-selectin and ICAM-1 on the
endothelial cells and of integrins on leukocytes,
granulocytes become attached to the endothe-
lium, migrate through the vessel wall and accu-
mulate in the interstitium [60, 76, 93, 128, 154,
160]. There, after further activation by cytokines,
they synthesize oxygen radicals, especially super-
oxide radicals that proceed to damage neuronal
tissue. The role of inflammatory cells in the
pathogenesis of secondary cell damage was fur-
ther elucidated in reperfusion experiments using
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blood lacking granulocytes, or antibodies to adhe-
sion molecules and trials on transgenic mice
[172, 196].

Figure 8 a. cGMP concentrations in hippocampal
slices from mature fetal guinea pigs after different dura-
tions of in vitro ischemia (10240 min). A portion of
the tissue slices was incubated for 30 min, before, dur-
ing and 10 min after ischemia, in 100 mM N-nitro-L-
arginine (NNLA). After 10 min recovery from 10 to 40
min of ischemia, a marked rise in cGMP levels was
observed in tissue slices that had not been incubated
in NNLA. Note that application of NNLA blocked the
ischemia-induced elevation of cGMP almost com-
pletely. 8 b. Protein synthesis rate in hippocampal slices
from mature fetal guinea pigs after different durations
of in vitro ischemia (20240 min) and a recovery period
of 12 h. A portion of the tissue slices was incubated in
100 mM N-nitro-L-arginine (NNLA) for 30 min before,
during and 12 hours after ischemia. Protein synthesis
rate was reducted to 50 % of initial levels after 40 min
ischemia. Note that blocking of NO-synthase with
NNLA did not improve the postischemic recovery of
protein synthesis. The statistical significance of differ-
ences between groups was assessed by ANOVA and the
Scheffé post-hoc test (a: P < 0.05 (ischemia vs. con-
trol), b: P < 0.05 (NNLA vs. without NNLA)) [31].
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Figure 9. Mechanisms of recirculatory induced brain damage. Ischemia and recirculation are possible inductors of
gene expression and formation of oxygen radicals. Endothelium derived oxygen radicals induce expression of
adhesion molecules to allow granulocytes crossing the blood brain barrier. The formation of oxygen radicals,
glutamate-induced excitotoxicity, and cytokines produced by activated microglia are damaging neuronal cells. NGF,
nerve growth factor; BDNF, brain-derived neurotrophic factor; TGF, transforming growth factor; PAF, platelet-
aggregating factor; ICAM-1, intercellular adhesion molecule 1; IL, interleukin; ONOO2, Peroxynitrite [61].

Interestingly, there is increasing evidence from
recent clinical studies that perinatal brain damage
is closely associated with ascending intrauterine
infection before or during birth [27, 55, 104,
206,]. However, it remains unclear whether fetal
brain damage due to endotoxemia is the result of
cerebral hypoperfusion caused by circulatory de-
centralization or is caused by a direct effect of
endotoxins on cerebral tissue. To clarify this point
we performed two sets of in-vitro experiments as
well as in-vivo experiments.

First, we studied the influence of lipopolysaccha-
rides (LPS) on nitric oxide (NO) production, en-
ergy metabolism and protein synthesis after oxy-
gen-glucose deprivation (OGD) in hippocampal
slices from fetal guinea pigs. Incubating slices in
LPS (4 mg/L) for as long as 12 h did not modu-
late NO production significantly. Nor did addition
of LPS to the incubation medium alter protein
synthesis or energy metabolism measured 12 h

J. Perinat. Med. 28 (2000)

after OGD [19]. In a second set of experiments
we elucidated the effects of LPS on circulatory
responses in immature fetal sheep before, during,
and after 2 min of intrauterine asphyxia. Within
1 h after i.v. injection of LPS (53 6 mg per kg
fetal weight) there was a steep fall in arterial oxy-
gen saturation and pH. Whereas blood flow to the
placenta severely decreased, that to the carcass
rose (figure 10). Shortly after asphyxia there was
an arrest of oxygen delivery to the cerebrum.

LPS-induced effects on fetal circulation, there-
fore, seem to play a central role in the develop-
ment of fetal brain damage due to intrauterine in-
fection. A direct toxic effect of LPS on immature
brain tissue may not be very likely. However, at
present delayed activation of LPS-sensitive path-
ways that are involved in apoptotic-like cell
death, or damage limited to a small subgroup of
cells such as oligodendrocyte progenitors cannot
be fully excluded.
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Figure 10. Combined ventricular output directed to the placenta and carcass in control (n 5 6) and LPS treated
(n 5 7) immature fetal sheep before, during and after arrest of uterine blood flow for 2 min. Unlike in control
fetuses, there was a significant fall in LPS treated fetuses in the percentage of combined ventricular output directed
to the placanta while that directed to the carcass significantly increased. During arrest of uterine blood flow the
portion distributed to the carcass remained elevated in fetuses of the study group (P < 0.001) [68]. Values are
given as means 6 SEM. The data were analyzed within and between groups using a two-way ANOVA followed
by Games-Howell post-hoc test (* P < 0.05, ** P < 0.01).

8.4 Glutamate

Williams and co-workers observed epileptiform
activity in mature sheep fetuses about 8 hours af-
ter 30 min of global cerebral ischemia that
reached a peak 10 hours after the ischemic period
[203]. They were able to completely inhibit this
epileptiform activity by application of the gluta-
mate antagonist MK-801, and show that the re-
sulting brain damage was markedly reduced in
the treated animals [187]. This suggests that a
secondary wave of glutamate release or an imbal-
ance between excitatory and inhibitory neuro-
transmitters during reperfusion may induce epi-
leptiform bursts of neuronal activity that can lead
to an uncoupling of cell metabolism and blood
flow. This would automatically impair pathways
of energy metabolism and cause a secondary
wave of cell damage [100].

9 Apoptosis and postischemic genome
expression

It is still unclear whether secondary cell death af-
ter ischemia is necrotic or apoptotic. The latter
condition is characterized by a shrinking of the
cell, blessing of the cell membrane, condenzation
of chromatin and DNA fragmentation induced by
a calcium-dependent endonuclease (figure 11)
[40]. In DNA electrophoresis this fragmentation

J. Perinat. Med. 28 (2000)

can be recognised by a typical DNA ladder [131].
In neuronal cell cultures, apoptosis can be pre-
vented by postischemic inhibition of protein syn-
thesis using cycloheximide, or inhibition of
RNA synthesis with actinomycin or through in-
hibition of endonuclease with aurin tricarboxylic
acid. In addition, the amount of apoptotic cell
death was reduced by inhibition of caspases in
neonatal rats after a hypoxic-ischemic insult
[45]. These findings all point towards the exis-
tence of a built-in cellular suicide programme
[170, 174]. It is also possible that the form
of secondary cell death following ischemia is
determined by the severity of the primary insult.
Thus Dragunow and co-worker were able to
demonstrate that delayed cell death in immature
rat brains subjected to a 15-min period of hyp-
oxic-ischemia was of an apoptotic nature, while
after a 60-min insult the neuronal damage was
predominantly necrotic [57]. Other investigators
have also reported correlations between the se-
verity of the insult and the extent of apoptotic
cell death [116, 133].

As has since been shown in numerous studies,
including some on immature animals, cerebral
ischemia can induce the expression of a whole
series of proto-oncogenes [36, 62, 142]. Proto-
oncogenes themselves code for proteins that act
as transscription factors and regulate the expres-
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Figure 11. Apoptosis in neuronal cell culture. a. Il-
lustration of an intact neuron (arrowhead) and an
apoptotic neuron with typical intracytoplasmic vesi-
cles (arrow). b. Fluorescence staining of 10 day old
apoptotic neurons which shows fragmentation of nu-
clei and condenzation of chromatin (arrows). c. DNA-
fragmentation in neurons illustrated by the TUNEL-
method [40].

J. Perinat. Med. 28 (2000)

sion of genes modulating cell growth and differ-
entiation. They are also termed ‘immediate early
genes’ since they are expressed within a few
minutes of an insult. These include c-fos, c-jun,
jun-B, jun-D. The transscriptional activity of
proteins of the fos-family is caused by a hetero-
dimer formation with proteins of the jun-family
[118]. Fos- and jun-proteins can also form di-
mers with proteins of the ATF- and CREB fami-
lies and thereby increase their promotor affinity
[85].

As already mentioned, transscription factors con-
trol the expression of genes participating in cell
growth and differentiation. Depending on the se-
verity of the insult, these factors are therefore ca-
pable of initiating processes leading to apoptotic
cell death or triggering a recovery programme.
Recent research findings have indicated that the
proto-oncogenes and cell cycle-dependent pro-
teins such as cyclin D1 [189, 202], and tumor
suppressor genes such as p53 are critically in-
volved in this control function.

Depending upon the developmental stage of the
injured brain and the extent of cell damage on the
one hand, and upon damage-induced p53 expres-
sion on the other, neurons may attempt cell cycle
entry, a process that will involve a certain amount
of DNA repair, or may only attempt transscrip-
tion-coupled DNA repair. The cell death decision
may result from the impossibility to proceed with
both processes. Indeed, it has recently been
shown in vitro that the p53 transscription factor,
besides its role in halting replication while favor-
ing repair, attenuates Bcl-2 expression, and is a
direct transscriptional activator of the Bax gene,
whose product is shown to induce apoptosis [5,
138, 139, 171].

10 Therapeutic strategies

Despite the critical clinical and socio-economic
consequences of perinatal brain damage, no ef-
fective therapeutic strategies have yet been devel-
oped to prevent its causes. However, as already
mentioned, some promising possibilities have
been revealed through animal experiments that
could be developed and tested in clinical studies.
Since a significant proportion of neuronal cell
damage is brought about by pathophysiological
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Figure 12 a, b. Section of the parasagittal cortex in (370 fold magnification) in term fetal sheep 5 days after
30 min of cerebral ischemia followed by normothermia (a) or mild hypothermia (b). a. Complete neuronal necrosis
(normothermic group). b. Minor degree of neuronal cell damage (hypothermic group) [80].

processes that first begin several hours or even
days after an ischemic insult (see secondary cell
damage and apoptosis), the setting up of a thera-
peutic window would be feasible. In the
following passages, current therapeutic concepts
will be described by which neuroprotection has
been achieved in animal models.

10.1 Hypothermia

The induction of mild hypothermia has raised in-
teresting possibilities for neuroprotection from
cerebral ischemia [124]. Various publications dat-
ing back to the 1950s, have described the thera-
peutic benefits of hypothermia in brains subjected
to a wide variety of insults including brain trauma
[164, 181], cerebral hemorrhage [101], cardiac
arrest [17], carbon monoxide poisoning [51], neo-
natal asphyxia [200] and seizures [39]. Based on
these findings, routine induction of hypothermia
was introduced early on in heart and brain sur-

J. Perinat. Med. 28 (2000)

gery to protect the brain in the event of iatrogenic
intraoperative cardiac arrest [38, 58, 115, 121,
145]. Over the last few years, induction of mild
hypothermia has been examined once again as a
means of protecting the brain from ischemically
induced damage. Experimental studies on adult
animals have shown that lowering of the brain
temperature by 324 8C during global cerebral
ischemia reduces neuronal cell damage dramati-
cally [41, 49, 77, 199, 201]. Furthermore, the
treated animals were found to perform better than
controls in subsequent learning and behavioral
tests [77].

The author’s research team were also able to
demonstrate a neuroprotective effect of mild hy-
pothermia in fetal brain tissue subjected to isch-
emic insults. They found that the postischemic
recovery of protein synthesis and energy metab-
olism in hippocampal slices from mature guinea
pig fetuses was considerably improved, in com-
parison to controls, by induction of mild hypo-
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thermia [25, 30, 69 a]. In a recently published
study, Gunn and co-workers described the ef-
fects of moderate hypothermia in sheep fetuses
subjected to severe global cerebral ischemia in
utero [80]. Hypothermia was initiated during
the reperfusion phase, 90 min after induction of
30 mins of ischemia, in a 4-vessel occlusion
model, and maintained for 72 hours. By this
method it was possible to reduce the extent of
neuronal cell damage in areas of the cortex
cerebri by up to 60 % (figure 12) [80]. Even if
hypothermia was started not before several
hours after ischemia, neuroprotection could be
observed in various animal models [69 a, 82].
Based on these results, many authors now con-
sider the induction of hypothermia during and
particularly after a hypoxic-ischemic insult to
be an effective therapeutic strategy [42, 80]. In
fact, Gunn and co-workers demonstrated in a
recent clinical study that selective head cooling
in newborn infants after perinatal asphyxia is a
safe and convenient method of quickly reducing
brain temperature [81].

10.2 Pharmacological intervention

Now that the pathophysiological mechanisms un-
derlying neuronal cell damage are better under-
stood, diverse possibilities present themselves for
pharmacological intervention. Interest is currently
focused on the administration of oxygen radical
scavengers, NO inhibitors, glutamate antagonists,
calcium antagonists, growth factors and anticy-
tokines. Table III presents all the potential neuro-
protective substances currently under investiga-
tion [modified according to 194].

10.3 Magnesium

The last interesting therapeutic approach to be
discussed emerged from a retrospective analysis
carried out by Nelson and Grether. Recently, in
a population of 155,636 infants, these authors
showed that ante-partum application of magne-
sium considerably lowered the incidence of ce-
rebral palsy in newborns weighing less than
1500 g [146]. The incidence of moderate to
severe cerebral palsy was 4.8 % in this
group. 75 matched pairs were compared with
the 42 children with cerebral palsy. In the con-
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trol group 36 % of the children had been treated
with magnesium, whereas, in the group with
cerebral palsy only 7 % had been treated. This
difference was statistically highly significant.
Almost identical results were recently obtained
in a retrospective study carried out by Schendel
and co-workers [179].

The neuroprotective effect of magnesium has
been attributed to a variety of effects on patho-
physiological mechanisms during and after cere-
bral ischemia, i. e. vasodilation, inhibition of the
NMDA-receptor, anti-convulsive properties. Fur-
thermore, magnesium also seems to block the ac-
tivation of NO-synthase after cerebral ischemia
[69]. On the strength of these results several clin-
ical studies have been conducted to test the effect
of magnesium on the incidence of cerebral palsy
in preterm fetuses.

11 Conclusion

Perinatal brain damage in the mature fetus is usu-
ally brought about by severe intrauterine asphyxia
following an acute reduction of the uterine or um-
bilical circulation. Owing to the acute reduction
in oxygen supply, oxidative phosphorylation in
the brain comes to a standstill. The Na1/K1

pump at the cell membrane has no more energy
to maintain the ionic gradients. In the absence of
a membrane potential, large amounts of calcium
ions flow through the voltage-dependent ion
channel, down an extreme extra-/intracellular
concentration gradient, into the cell. Addition-
ally to the influx of calcium ions into the cells
via voltage-dependent calcium channels, cal-
cium also enters the cells through glutamate-
regulated ion channels. Current research sug-
gests that the excessive increase in levels of
intracellular calcium, so-called calcium over-
load, leads to cell damage through the activation
of proteases, lipases and endonucleases. A se-
cond wave of neuronal cell damage occurs dur-
ing the reperfusion phase. This cell damage is
thought to be caused by the postischemic inhibi-
tion of protein synthesis, release of oxygen radi-
cals, synthesis of nitric oxide, inflammatory re-
actions and an imbalance between the excitatory
and inhibitory neurotransmitter systems. Part of
the secondary neuronal cell damage may be
caused by induction of a kind of cellular suicide
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Table III. Pharmacological intervention on hypoxic/ischemic brain damage in various models of hypoxia/ischemia [335]

Treatment class Treatment details Age/species Hypoxic/ Time of Neuro- Refer-
ischemic insult treatment with protection/ ence

respect to insult pathology

VSCC’s anatgonists Flunarizine (30 mg/kg) 7 days/rat UCO 1 2 h 8 %O2 pre partial [184]
Flunarizine (30 mg/kg) 7 days/rat UCO 1 3 h 8 %O2 pre partial [48]
Flunarizine (30 mg/kg) 21 days/rat UCO 1 2 h 8 %O2 pre partial [78]
Flunarizine (9 mg/kg) fetal sheep 30 min BCO (1VOAO) pre partial [79]
Flunarizine (1 mg/kg) fetal sheep 30 min BCO (1VOAO) pre partial [32]
Nimodipine (70 mg/kg or 0.5 mg/kg) 7 days/rat UCO 1 3 h 8 %O2 pre no effect [48]
Nimodipine (0.5 mg/kg) 023 days/pig 30 min BCO 1 hypotonia post no effect [114]

& 15 min 6 % O2

NMDA anatgonist MK-801 (10 mg/kg) 7 days/rat BCO 1 1 h 8 %O2 pre total [95]
MK-801 (10 mg/kg) 7 days/rat BCO 1 1 h 8 %O2 post partial [95]
MK-801 (1 mg/kg) 7 days/rat UCO 1 3 h 8 %O2 pre, intra partial [123]
MK-801 (10 mg/kg) 7 days/rat UCO 1 2 h 8 %O2 pre, intra partial [63]
MK-801 (0.3 bzw. 0.5 mg/kg) 7 days/rat UCO 1 1.5 h 7.6 %O2 post (0 h) partial [84]
MK-801 (0.75 mg/kg) 7 days/rat UCO 1 1.5 h 7.6 %O2 post (0 h) no effect [84]
MK-801 (3 mg/kg) 023 days/pig 30 min BCO 1 hypotonia post (0 h) no effect [113]

& 15 min 6 % O2
MK-801 (0.3 mg/kg 1 Schaffet 30 min global ischemia post (6236 h) partial [187]
Felbamate (300 mg/kg) 7 days/rat BCO 1 1 h 6.5 %O2 post partial [198]

AMPA antagonist NBQX (20120 mg/kg) 7 days/rat UCO 1 1.5 h 7.6 % O2 post (0 1 1 h) partial [84]

Glutamate release inhibitor BW1003C87 (10 mg/kg) 7 days/rat UCO 1 1.5 h 7.7 % O2 pre partial [73]

Nonspecific glutamate antagonist Kynurenic acid (300 mg/kg) 7 days/rat UCO 1 2 h 7.7 % O2 post partial [4]
Kynurenic acid (2002300 mg/kg) 7 days/rat UCo 1 1.5 h 8 % O2 pre (1 h) partial [149]

Antioxidant enzymes PEG-SOD 1 PEG-Catalase 023 days/pig 30 min BCO 1 hypotonia post no effect [114]
(10.000 U/kg) u. 15 min 6 % O2

Iron chelator Deferoxamine (100 mg/kg) 7 days/rat UCO 1 2.25 h 8 % O2 post (5 min) partial [159]

Free radical scavengers Allopurinol (135 mg/kg) 7 days/rat UCO 1 3 h 8 % O2 pre or post (15 min) partial [157,158]
U74006F (7.5 mg/kg) 7 days/rat UCO 1 2 h 7.7 % O2 post or pre & post partial [9]

pre & post
U74689F (10 mg/kg) 7 days/rat UCO 1 3 h 8 % O2 pre & post no effect [48]

NO synthase inhibitors Nitro-L-Arginine 7 days/rat UCO 1 2.5 h 8 % O2 pre & post partial/ [90]
no effect

Nitro-L-Arginine (502100 mg/kg) 7 days/rat UCO 1 8 % O2 pre partial [191]

Glucocorticoids Dexamethasone (0.0120.5 mg/kg/Tag) 7 days/rat UCO 1 3 h 8 % O2 pre total [11]
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programme known as apoptosis. Interestingly,
there is increasing evidence from recent clinical
studies that perinatal brain damage is closely
associated with ascending intrauterine infection
before or during birth. However, a major part
of this damage is likely to be of hypoxic-isch-
emic nature due to LPS-induced effects on fetal
cerebral circulation. Knowledge of these patho-
physiological mechanisms has enabled scientists
to develop new therapeutic strategies with suc-
cessful results in animal experiments. Among
these intravenous administration of magnesium
and postischemic induction of cerebral hypo-
thermia may be of clinical relevance during the
next years.

Abstract

Perinatal brain damage in the mature fetus is usually
brought about by severe intrauterine asphyxia following
an acute reduction of the uterine or umbilical circula-
tion. The areas most heavily affected are the parasagittal
region of the cerebral cortex and the basal ganglia. The
fetus reacts to a severe lack of oxygen with activation
of the sympathetic-adrenergic nervous system and a re-
distribution of cardiac output in favor of the central or-
gans (brain, heart and adrenals). If the asphyxic insult
persists, the fetus is unable to maintain circulatory cen-
tralization, and the cardiac output and extent of cerebral
perfusion fall. Owing to the acute reduction in oxygen
supply, oxidative phosphorylation in the brain comes to
a standstill. The Na1/K1 pump at the cell membrane
has no more energy to maintain the ionic gradients. In
the absence of a membrane potential, large amounts of
calcium ions flow through the voltage-dependent ion
channels, down an extreme extra-/intracellular concen-
tration gradient, into the cell. Current research suggests
that the excessive increase in levels of intracellular
calcium, so-called calcium overload, leads to cell dam-
age through the activation of proteases, lipases and en-
donucleases. During ischemia, besides the influx of
calcium ions into the cells via voltage-dependent
calcium channels, more calcium enters the cells through
glutamate-regulated ion channels. Glutamate, an excit-
atory neurotransmitter, is released from presynaptic ves-
icles during ischemia following anoxic cell depolariza-
tion. The acute lack of cellular energy arising during
ischemia induces almost complete inhibition of cerebral
protein biosynthesis. Once the ischemic period is over,
protein biosynthesis returns to preischemic levels in
non-vulnerable regions of the brain, while in more vul-
nerable areas it remains inhibited. The inhibition of pro-
tein synthesis, therefore, appears to be an early indicator
of subsequent neuronal cell death. A second wave of
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neuronal cell damage occurs during the reperfusion
phase. This cell damage is thought to be caused by the
postischemic release of oxygen radicals, synthesis of ni-
tric oxide (NO), inflammatory reactions and an imbal-
ance between the excitatory and inhibitory neurotrans-
mitter systems. Part of the secondary neuronal cell dam-
age may be caused by induction of a kind of cellular
suicide programme known as apoptosis. Interestingly,
there is increasing evidence from recent clinical studies
that perinatal brain damage is closely associated with

Keywords: Fetal brain damage, asphyxia, hypoxia-ischemia, glutamate, endotoxin.
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